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Abstract— We propose an adaptive identification
scheme for a low-dimensional nonlinear model of the
human heart’s ECG dynamics. We show that this
scheme is suitable for data compression and possi-
bly the detection of diagnostically significant features.
Tests on real clinically measured ECG signals confirm
a very good performance of the model in terms of mod-
elling error and compression ratio.

I. INTRODUCTION

The identification of nonlinear models is of great in-
terest in various fields including biology, medicine and
economics. Here we consider a model for the Electro-
cardiogram (ECG), a recording (measurement) of the
electrical activity generated by the heart carried out
using sensors positioned on the body surface, which
will be identified. The analysis of the ECG signal pro-
vides the most common non-invasive method to diag-
nose cardiac disfunctions.

As in most data storage and transmission applica-
tions, a well performing compression scheme is essen-
tial for achieving a good storage and transmission ef-
ficiency.

The compression aspect can be connected with the
analysis aspect by using a well adapted signal model,
that ideally describes the signal by a small number
of meaningful parameters, thus achieving both com-
pression and feature analysis. In the past, a number
of parametric and non-parametric methods to analyze
and compress ECG signals have been proposed [2-7].

Starting from a timeseries analysis of the ECG sig-
nal, we propose in this paper a low-dimensional non-
linear signal model, and we show that

e the simple time domain model can accurately de-
scribe the dynamics of the ECG

e from a modeling perspective, the ECG cycle is
composed of a P, QRS and a T-wave

e 3 relatively small number of parameters is suffi-
cient to encode one ECG cycle

In the following we present the results of the time
series analysis, the proposed ECG time domain model,
discuss the identification of it’s parameters and assess
the compression ratio performance of the model.

II. ECG TIME SERIES ANALYSIS

An important aspect for the modeling is always the
dimension of the system that generated the time se-
ries to be modeled. A common way to estimate the
dimension is to perform an embedding of sufficiently
high order and to estimate topological invariants on
this reconstructed state space, such as one of various
dimensions, usually the correlation dimension.

The time series analysis was performed on ECG data
sampled at 500 Hz from patients in resting condition.
This ensures a certain stationarity of the data, which is
necessary since a large number of samples are needed
for reliable estimates of the correlation dimension.

We investigated different embedding techniques
(derivative embedding, time delay embedding), of
which we had best results with a 3-dimensional time
delay embedding with a lag A7 around 6 ms (Fig. 1).
Note that while for larger lags the inner part of the
state space unfolds better, the QRS complex will fold
back for AT > 6ms.

Figure 1: 3-dimensional time delay embedding of ECG
data using AT = 6ms

The state space reconstruction shows three loops
corresponding to the three waves of the ECG, the P,
QRS and T. We will see later in the proposed model
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a one to one correspondence of the parts of the model
with each of these waves of the ECG.

A method similar to the time delay embedding
shown here has been known for quite some time by the
name of Vectrocardiogram [5], where the time delay is
in fact achieved by measuring the ECG at different
locations, thus introducing delay caused by the propa-
gation of the waves. Of course, the results are slightly
different, since the additional delay (depending on the
properties of the tissue) is not necessarily constant.

III. ECG TIME DOMAIN MODEL

Inspired by the three distinguishable components of
the ECG state space reconstruction we propose to de-
scribe the ECG as a superposition of three submodels,
whose form is related to the underlying solution of a
wave propagation problem. We chose Gaussian mask-
ing functions modulated by cosinusoides, each masking
function being centered approximately around each of
its corresponding wave (P, QRS, T).
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Figure 2: P, QRS and T wave of an ECG cycle

We found that this form of the submodel is appli-
cable for each of the three waves, but the parameters
differ significantly, especially for the Gaussian masking
function.

The proposed model is of the form

z(t) = Z e(f%f Zank cos(kwp (t—t2y)) + O(1)
n=1 k=0
(1)

In this model, n = 1 is related to the P wave, n = 2
to the QRS wave while n = 3 is related to the T
wave. K is the number of harmonics needed. From
experiments, K = 2...3 was found to be sufficient.

As stressed before, based on this model it makes no
sense to distinguish a @), R and S wave, as is done
frequently in ECG interpretation. Instead, all three
belong to the same term of the model (n = 2).

Instead of the cosinusoides used here, other orthog-
onal series expansions can be considered [8, 9] for the
modulation term, however, we expect that the fre-
quency w, has an interpretable meaning in the sense

of a fundamental frequency that other approximations
can not provide.

The model was tested on a proprietary database.
First, a beat detection was performed in order to iden-
tify the R-R intervals. Second, an optimization in
terms of the least square error was used to fit the model
parameters.

IV. MODEL IDENTIFICATION

Several approaches for identifying the parameters of
(1) where evaluated, including identifying each wave
separately (exploiting the strong masking of the Gaus-
sian) and processing an entire ECG cycle at once.

It showed that performance of the identification,
specifically the convergence not just towards a local
optimum strongly depends on a good initial guess of
the model parameters. For that, the parameters of the
Gaussians are approximated by the use of the peak and
corresponding 60% values of the ECG cycle (Fig. 3).
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Figure 3: Peaks and 60%-points (for initial guess)

While for the identification of each wave separately
the problem is easier (env. 10 parameters), the fact
that the three waves overlap creates considerable prob-
lems. That’s why we chose to identify all parame-
ters simultaneously, using a conventional Levenberg-
Marquand procedure.

The Levenberg-Marquard procedure is essentially a
2nd order optimization method. Let 8 be the vector

of the model’s parameters
0 = [tin,ton, wn, Tn,ank, k=0... K,n=1...3]. (2)

and let F'(8) be defined as the approximation error
vector. Let us define C(8) as the associated mean
quadratic error such that

F(8) = [z9(nAT) —d(nAT),n =1... L7 (3)

c® = IF@I” (4)

where AT = 1/f, is the sampling period of the ECG
signal d(¢t) we want to approximate. For finding a
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vector § that minimizes C(0) (4), a modified quasi-
Newton method (Levenberg-Marquardt) is used, pro-
viding a recursive estimate

O(k) =0k — 1) — [I"(R)L(k) + \eI) ' I(R)  (5)

which converges towards a local minimum of C(6),
J (k) is the Jacobian matrix of F'(§) and A biases the
direction of the descent towards the gradient, mak-
ing the procedure more robust than a Gauss-Newton
method. For more details of the implementation, see
[10].

For the next ECG cycle we do not need to use an
initial guess as crude as described before, since we can
exploit the fact that the waveform does not change
significantly from one ECG cycle to the next. Thus
the previously estimated set of parameters can be used
as a starting point of the optimization.
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Figure 4: Original, fit and error of an entire cycle

Figure 4 shows one typical result of curve fitting
using the proposed model.

Note that the quality of the fit is very high, the
original waveform and the one obtained using the pro-
posed model are hardly distinguishable. Due to the
chosen harmonic series model (Eq. 1) for the mod-
ulation term, the error waveform has a cosinusoidal
shape. A better insight on the model’s approximation
quality can be gained from the magnified view of the
separate waves in Fig. 5,6,7.

Figure 5: Orig., fit, error and mask (P wave)

Note that the relative error is larger for the P wave
since it’s amplitude is small compared to the QRS’s.

The baseline shift in Fig. 5 is due to the overlap of the
models for the three waves.

Figure 6: Orig., fit, error and mask (QRS wave)

The QRS wave (Fig. 6) presents the main motiva-
tion for the proposed model. Especially here it was
found that only a Gaussian masking function is strong
enough to follow exactly the well-defined onset and
end of the QRS. Similar results have been found in
[9].

Figure 7: Orig., fit, error and mask (T wave)

Here the performance of the model is shown on
noise-reduced ECG data (Fig. 2,3,4), but tests on
more noisy (untreated) ECG show similar results, in
fact the coding of the ECG using the model also in-
troduces a noise reduction. Of course, the resulting
residual must analyzed carefully to assure that no im-
portant information is lost due to the fact that it is
not contained in the model. To accomplish this, the
analysis of the residual with respect to its distribution
and dimensionality seems of particular interest.

At this point, the optimization technique used is
far from optimal. The Matlab optimization toolbox
we used so far is sufficient for the model verification,
but for a (desirably real time) implementation, the
optimization algorithm must be improved.

This algorithm should certainly take into account
the orthogonality of the modulation term’s coefficients
and should possibly employ a step-by-step technique
by finding a raw model first and refining the model by
adding higher harmonics later.

V. MODEL PERFORMANCE

Traditionally, ECG compression schemes performance
is measured in a rate-distortion context and PRD
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(percent root mean square distortion) is usually cons-
didered.

However, similar to perceptual coding of audio and
images, this error measure does not necessarily provide
a good insight to the feature conservation properties
of the compression scheme [1]. In the literature [1],
additionally, visual inspection by experienced persons
is suggested, as done in audio and image coding as
well.

The data compression capabilities are essentially de-
termined by the number of parameters that are nec-
essary per ECG cycle. For the case of K = 2, which
allows a high fidelity of the ECG reconstruction, 36
parameters are used. At this point no performance
optimized coding (entropy code, differential encoding
of the parameters to exploit small beat to beat varia-
tions) has been implemented. However, the most sub-
stantial performance gain can be expected from the
differential encoding, which is possible due to the fact
that the model provides meaningful parameters that
are reproducible on the ECG cycle.

VI. CONCLUSION

The paper we present here shows that a very low-
dimensional dynamical system provides a good model
of the ECG signal. Starting from the time series analy-
sis, a new time-domain model accounting for the ECG
dynamics was constructed. In our experiments the
identification of the model’s parameters was feasible
yielding a good approximation of the ECG cycle. In
the future, additional simulations will need to be car-
ried out using the MIT-BIH database. It must be
emphasized that focusing solely on mean square error
criteria does not guarantee good feature conservation.
The approach using a Gaussian masking function is
similar to the work in [8, 9], even though there the
notion of a masking function is not used. Here we use
the same type of model for all three waves of the ECG,
whereas [8] applies it to the QRS only. The main dif-
ference to the approach presented there is the use of
a different orthonormal basis (Hermitian polynomes)
whereas here a harmonic series is used.

However, the proposed approach using a harmonic
series inspires a dynamical (oscillator) model with a
nonlinearity creating the higher order harmonics. This
aspect makes the presented model interesting for fur-
ther research in the direction of an oscillator model for
the ECG.

Currently an implementation on a TMS320C3x se-
ries DSP is in development, which will allow us to
further investigate the real time performance of the
parameter approximation.

Concluding we would like to stress that a low-
dimensional nonlinear model explaining the ECG dy-
namics, suitable for data compression and possibly fea-
ture detection, has been developed. Using several tests

on real clinically measured ECG signals we confirmed
very good performance of the model in terms of small
modeling errors.
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