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ADAPTIVE IDENTIFICATION OF NONLINEAR MODELS FORDATA STORAGE AND COMPRESSIONT. Schimmingy, H. Dedieuy, M. OgorzalekzyCircuits and Systems Group, EPFL, Lausanne, SwitzerlandThomas.Schimming@epfl.chzUniversity of Mining and Metallurgy, Krakov, PolandAbstract| We propose an adaptive identi�cationscheme for a low-dimensional nonlinear model of thehuman heart's ECG dynamics. We show that thisscheme is suitable for data compression and possi-bly the detection of diagnostically signi�cant features.Tests on real clinically measured ECG signals con�rma very good performance of the model in terms of mod-elling error and compression ratio.I. INTRODUCTIONThe identi�cation of nonlinear models is of great in-terest in various �elds including biology, medicine andeconomics. Here we consider a model for the Electro-cardiogram (ECG), a recording (measurement) of theelectrical activity generated by the heart carried outusing sensors positioned on the body surface, whichwill be identi�ed. The analysis of the ECG signal pro-vides the most common non-invasive method to diag-nose cardiac disfunctions.As in most data storage and transmission applica-tions, a well performing compression scheme is essen-tial for achieving a good storage and transmission ef-�ciency.The compression aspect can be connected with theanalysis aspect by using a well adapted signal model,that ideally describes the signal by a small numberof meaningful parameters, thus achieving both com-pression and feature analysis. In the past, a numberof parametric and non-parametric methods to analyzeand compress ECG signals have been proposed [2-7].Starting from a timeseries analysis of the ECG sig-nal, we propose in this paper a low-dimensional non-linear signal model, and we show that� the simple time domain model can accurately de-scribe the dynamics of the ECG� from a modeling perspective, the ECG cycle iscomposed of a P , QRS and a T -wave� a relatively small number of parameters is su�-cient to encode one ECG cycle

In the following we present the results of the timeseries analysis, the proposed ECG time domain model,discuss the identi�cation of it's parameters and assessthe compression ratio performance of the model.II. ECG TIME SERIES ANALYSISAn important aspect for the modeling is always thedimension of the system that generated the time se-ries to be modeled. A common way to estimate thedimension is to perform an embedding of su�cientlyhigh order and to estimate topological invariants onthis reconstructed state space, such as one of variousdimensions, usually the correlation dimension.The time series analysis was performed on ECG datasampled at 500 Hz from patients in resting condition.This ensures a certain stationarity of the data, which isnecessary since a large number of samples are neededfor reliable estimates of the correlation dimension.We investigated di�erent embedding techniques(derivative embedding, time delay embedding), ofwhich we had best results with a 3-dimensional timedelay embedding with a lag �� around 6 ms (Fig. 1).Note that while for larger lags the inner part of thestate space unfolds better, the QRS complex will foldback for �� > 6ms.
Figure 1: 3-dimensional time delay embedding of ECGdata using �� = 6msThe state space reconstruction shows three loopscorresponding to the three waves of the ECG, the P ,QRS and T . We will see later in the proposed model
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a one to one correspondence of the parts of the modelwith each of these waves of the ECG.A method similar to the time delay embeddingshown here has been known for quite some time by thename of Vectrocardiogram [5], where the time delay isin fact achieved by measuring the ECG at di�erentlocations, thus introducing delay caused by the propa-gation of the waves. Of course, the results are slightlydi�erent, since the additional delay (depending on theproperties of the tissue) is not necessarily constant.III. ECG TIME DOMAIN MODELInspired by the three distinguishable components ofthe ECG state space reconstruction we propose to de-scribe the ECG as a superposition of three submodels,whose form is related to the underlying solution of awave propagation problem. We chose Gaussian mask-ing functions modulated by cosinusoides, each maskingfunction being centered approximately around each ofits corresponding wave (P , QRS, T ).
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P - w a v eFigure 2: P , QRS and T wave of an ECG cycleWe found that this form of the submodel is appli-cable for each of the three waves, but the parametersdi�er signi�cantly, especially for the Gaussian maskingfunction.The proposed model is of the formx(t) = 3Xn=1 e(� t�t1nTn )2 KXk=0 ank cos(k!n(t� t2n)) + O(t)(1)In this model, n = 1 is related to the P wave, n = 2to the QRS wave while n = 3 is related to the Twave. K is the number of harmonics needed. Fromexperiments, K = 2 : : : 3 was found to be su�cient.As stressed before, based on this model it makes nosense to distinguish a Q, R and S wave, as is donefrequently in ECG interpretation. Instead, all threebelong to the same term of the model (n = 2).Instead of the cosinusoides used here, other orthog-onal series expansions can be considered [8, 9] for themodulation term, however, we expect that the fre-quency !n has an interpretable meaning in the sense

of a fundamental frequency that other approximationscan not provide.The model was tested on a proprietary database.First, a beat detection was performed in order to iden-tify the R-R intervals. Second, an optimization interms of the least square error was used to �t the modelparameters.IV. MODEL IDENTIFICATIONSeveral approaches for identifying the parameters of(1) where evaluated, including identifying each waveseparately (exploiting the strong masking of the Gaus-sian) and processing an entire ECG cycle at once.It showed that performance of the identi�cation,speci�cally the convergence not just towards a localoptimum strongly depends on a good initial guess ofthe model parameters. For that, the parameters of theGaussians are approximated by the use of the peak andcorresponding 60% values of the ECG cycle (Fig. 3).
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Figure 3: Peaks and 60%-points (for initial guess)While for the identi�cation of each wave separatelythe problem is easier (env. 10 parameters), the factthat the three waves overlap creates considerable prob-lems. That's why we chose to identify all parame-ters simultaneously, using a conventional Levenberg-Marquand procedure.The Levenberg-Marquard procedure is essentially a2nd order optimization method. Let � be the vectorof the model's parameters� = [t1n; t2n; !n; Tn; ank; k = 0 : : :K; n = 1 : : : 3]: (2)and let F (�) be de�ned as the approximation errorvector. Let us de�ne C(�) as the associated meanquadratic error such thatF (�) = [x�(n�T )� d(n�T ); n = 1 : : : L]T (3)C(�) = kF (�)k2 (4)where �T = 1=fs is the sampling period of the ECGsignal d(t) we want to approximate. For �nding a
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vector �̂ that minimizes C(�) (4), a modi�ed quasi-Newton method (Levenberg-Marquardt) is used, pro-viding a recursive estimate�̂(k) = �̂(k � 1)� [JT (k)J(k) + �kI ]�1J(k) (5)which converges towards a local minimum of C(�),J(k) is the Jacobian matrix of F (�) and �k biases thedirection of the descent towards the gradient, mak-ing the procedure more robust than a Gauss-Newtonmethod. For more details of the implementation, see[10].For the next ECG cycle we do not need to use aninitial guess as crude as described before, since we canexploit the fact that the waveform does not changesigni�cantly from one ECG cycle to the next. Thusthe previously estimated set of parameters can be usedas a starting point of the optimization.
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Figure 4: Original, �t and error of an entire cycleFigure 4 shows one typical result of curve �ttingusing the proposed model.Note that the quality of the �t is very high, theoriginal waveform and the one obtained using the pro-posed model are hardly distinguishable. Due to thechosen harmonic series model (Eq. 1) for the mod-ulation term, the error waveform has a cosinusoidalshape. A better insight on the model's approximationquality can be gained from the magni�ed view of theseparate waves in Fig. 5,6,7.
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errorFigure 5: Orig., �t, error and mask (P wave)Note that the relative error is larger for the P wavesince it's amplitude is small compared to the QRS's.

The baseline shift in Fig. 5 is due to the overlap of themodels for the three waves.
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Figure 6: Orig., �t, error and mask (QRS wave)The QRS wave (Fig. 6) presents the main motiva-tion for the proposed model. Especially here it wasfound that only a Gaussian masking function is strongenough to follow exactly the well-de�ned onset andend of the QRS. Similar results have been found in[9].
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maskFigure 7: Orig., �t, error and mask (T wave)Here the performance of the model is shown onnoise-reduced ECG data (Fig. 2,3,4), but tests onmore noisy (untreated) ECG show similar results, infact the coding of the ECG using the model also in-troduces a noise reduction. Of course, the resultingresidual must analyzed carefully to assure that no im-portant information is lost due to the fact that it isnot contained in the model. To accomplish this, theanalysis of the residual with respect to its distributionand dimensionality seems of particular interest.At this point, the optimization technique used isfar from optimal. The Matlab optimization toolboxwe used so far is su�cient for the model veri�cation,but for a (desirably real time) implementation, theoptimization algorithm must be improved.This algorithm should certainly take into accountthe orthogonality of the modulation term's coe�cientsand should possibly employ a step-by-step techniqueby �nding a raw model �rst and re�ning the model byadding higher harmonics later.V. MODEL PERFORMANCETraditionally, ECG compression schemes performanceis measured in a rate-distortion context and PRD
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(percent root mean square distortion) is usually cons-didered.However, similar to perceptual coding of audio andimages, this error measure does not necessarily providea good insight to the feature conservation propertiesof the compression scheme [1]. In the literature [1],additionally, visual inspection by experienced personsis suggested, as done in audio and image coding aswell.The data compression capabilities are essentially de-termined by the number of parameters that are nec-essary per ECG cycle. For the case of K = 2, whichallows a high �delity of the ECG reconstruction, 36parameters are used. At this point no performanceoptimized coding (entropy code, di�erential encodingof the parameters to exploit small beat to beat varia-tions) has been implemented. However, the most sub-stantial performance gain can be expected from thedi�erential encoding, which is possible due to the factthat the model provides meaningful parameters thatare reproducible on the ECG cycle.VI. CONCLUSIONThe paper we present here shows that a very low-dimensional dynamical system provides a good modelof the ECG signal. Starting from the time series analy-sis, a new time-domain model accounting for the ECGdynamics was constructed. In our experiments theidenti�cation of the model's parameters was feasibleyielding a good approximation of the ECG cycle. Inthe future, additional simulations will need to be car-ried out using the MIT-BIH database. It must beemphasized that focusing solely on mean square errorcriteria does not guarantee good feature conservation.The approach using a Gaussian masking function issimilar to the work in [8, 9], even though there thenotion of a masking function is not used. Here we usethe same type of model for all three waves of the ECG,whereas [8] applies it to the QRS only. The main dif-ference to the approach presented there is the use ofa di�erent orthonormal basis (Hermitian polynomes)whereas here a harmonic series is used.However, the proposed approach using a harmonicseries inspires a dynamical (oscillator) model with anonlinearity creating the higher order harmonics. Thisaspect makes the presented model interesting for fur-ther research in the direction of an oscillator model forthe ECG.Currently an implementation on a TMS320C3x se-ries DSP is in development, which will allow us tofurther investigate the real time performance of theparameter approximation.Concluding we would like to stress that a low-dimensional nonlinear model explaining the ECG dy-namics, suitable for data compression and possibly fea-ture detection, has been developed. Using several tests
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